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Abstract. This paper covers some astronomy design patterns and perhaps some
anti-patterns in astronomy. We will use our experience on several long projects such as
Rubin Observatory, Gaia, SDSS, UKIRT, and JCMT to highlight some of the the things
which worked and a few things that did not work so well.

1. Introduction

The Legacy Survey of Space and Time (Ivezić et al. 2019) is a "deep fast wide" optical/near-
IR survey of half the sky in ugrizy bands to r 27.5 (36 nJy) based on 825 visits over a
10-year period. Carried out by the Vera C. Rubin Observatory on Cerro Pachón (with an
altitude of 2647 m) in Chile, the survey will produce around 100 PB of data consisting
of about a billion 16 Mpix images, enabling measurements for 40 billion objects.

The telescope mount assembly is due to be handed over by the end of 2022, and
in 2023 the mirrors should be mounted with the commissioning camera (a single raft,
about 5% of the full camera size) to perform verification of the system. The observatory
is due to go into full operations in 2024. We routinely operate the Rubin Auxiliary
Telescope with the LATISS instrument as both an imager and spectrograph (Ingraham
et al. 2020), the latter being its purpose in operations as a calibration aid. For regularly
updated key milestones see O’Mullane (2022).

2. System Vision

The mission statement for Rubin Data Management (DM) is to “Stand up operable,
maintainable, quality services to deliver high-quality LSST data products for science
and education, all on time and within reasonable cost.”

Rubin Observatory will take an image approximately every 40 s (slew and settle
time plus 30 s exposure time) which leads to around 20 TB of images streaming off the
mountain from Chile each night. The 100 Gbps network from Chile to the USA was
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an early investment of the project which is now finally in place (though the redundant
link still has some pending work). Using this network Rubin Data Management must
get the images to SLAC within seven seconds and once at SLAC prompt processing
commences (see Section 3.1). After 80 hours images will be available to the data rights
holders (see Marshall (2020) for more on data releases). On a roughly annual cadence
DM will reprocess all the images taken since the start of operations and release new
catalogs and other products as defined in Jurić et al. (2021) (see Section 3.2).

Rubin’s LSST is not the first wide-field imaging survey but the combination of
depth, area, and throughput make it uniquely challenging. Everything is blended and
many measurements are systematics limited, but we are already testing on precursors
like Hyper Suprime-Cam (HSC; Bosch et al. 2018).

2.1. Democratizing research in astronomy

We feel open-source software is key to open science: not just for traditional repro-
ducibility arguments, but because it is a step toward inclusivity as open data alone is
not enough. We must also find ways to support researchers who are resource-poor (do
not have the compute resources associated with major research universities), time-poor
(have a high teaching load, few/no grad students or postdocs), or who work in liberal
arts colleges, historically black colleges, or other places that lack a large peer network
for technical and research support.

Lowering the barrier to entry requires minimizing the investment (time, money,
experience) necessary to meaningfully engage with the scientific questions that can
be resolved with the data. As we move to operations we wish to provide a quality
experience to all of our users and the Rubin Science Platform provides a level playing
field for interacting with Rubin data. You do need an internet connection and a browser
but the load is all on our servers, hence your institute does not need to have a super
computer to allow sophisticated experimentation.

3. Architecture

Figure 1 shows a simplified view of the system architecture, the full details are publicly
available in (Lim et al. 2018). All the DM code is available on GitHub at https:
//github.com/lsst.

DM’s work commences once the image is read out of the Camera. DM already
gathers some information which the Camera software puts in the image header to make
a minimally meaningful image. As the data is written the Camera software also pro-
vides a quick look of the image. Once available the image is written to the Observatory
Operations Data Service (OODS) and simultaneously transferred to the US Data Fa-
cility (USDF) at SLAC via the Prompt Transfer System. Though we use Rucio for
transfers between facilities we could not make it fast enough for the Prompt Transfer
which is custom code. We will say a little more about prompt processing in Section 3.1

On the summit there is a restricted access Science Platform which allows staff to
interact with the images in the OODS directly. A cluster of about 400 cores is available
for quick adhoc processing in situ, however, we expect most processing to be done at
the USDF.
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Figure 1. Simplified Vera C. Rubin Architecture diagram from Magic Draw

3.1. Prompt Processing

The Prompt Processing framework runs at the USDF, though many of the components
of the framework will be reused to drive rapid analysis and quick-look functionality
at the Summit and test stand facilities. The design of Prompt Processing is driven be
the requirement that alerts be distributed within 60 seconds of completion of readout
of the last exposure of the visit. To enable as much I/O and computation as possible
to be done in advance, we instantiate one process per CCD when the summit sends a
next_visit Kafka event. These next_visit events provide notice of the telescope pointing,
exposure duration, filter selection, and other metadata at least 20 seconds in advance of
the first exposure of a visit. Upon receiving the next_visit event, we use knative in a
Kubernetes environment to prepare a new container where we connect to the Butler to
pre-load reference catalogs, calibration products, templates, solar system ephemerides,
and prior alert history. Once the raw images corresponding to an earlier next_visit
event for a given detector finish downloading to a local Ceph object store, the images
are ingested to the container-local Butler and the Alert Production pipeline payload
begins processing. Other payloads, such as the Commissioning pipelines or Calibration
Products pipelines, can also be run using the framework. The Alert Production pipeline
produces packaged alerts that are streamed to the Community Brokers, writes all data
products to the repository at the USDF with the Butler, and updates the Alert Pipeline
Database (APDB) with new measurements. Detailed information on the initial design
and prototype in the Google Cloud environment can be found in Lim (2022b). Figure
2 provides flow chart for prompt processing.
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Figure 2. Prompt Processing flow diagram.

3.2. Data Release Processing

About once per year we will reprocess all data from the start of the survey. We will
spend a few months in precursor runs and QA before starting the nine month processing
ordeal. The jobs for this are distributed between France, US and UK using PanDA (Lim
2022a) Figure 3 provides an event chart for this.

Figure 3. DRP event chart from Magic Draw

3.3. Data Access

Data rights holders will have access to the catalogs and images via the Rubin Science
platform. The catalogs are large for relational databases; while the object catalog at
4 × 1010 rows may be manageable, the source catalog (of all observations) will run to
1012 rows, which is beyond conventional relational technology. QServ (Mueller et al.
2023) was built specifically to answer astronomu queries quickly for large numbers of
users. We have also tried non relational DBs including Google’s BigQuery Thomson
(e.g., 2019) but QServ provides the best value for catalog queries. However, we see
the advantage of non-relational technology for some unpredictable and complex access
which QServ may or may not handle for user-defined functions, pattern matching, or
unusual iteration schemes. In fact many cloud tools work best with cloud formats like
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parquet and we are considering having parquet files along side QDerv for use with
Spark or DASK.

A subset of data will be public via Education and Public Outreach, including for
citizen science projects. The Alert stream itself will be fully public.

We will hold most data at SLAC but run the science platform on Google (O’Mullane
et al. 2021). We choose this Hybrid model since Compute is cheap on the cloud but
storage is expensive. The ingress is free and the user egress is manageable.

3.4. Cloud Native

Like many projects (O’Mullane et al. 2017) Rubin leaned heavily on containers early
on. We also quickly understood the need for sophisticated container orchestration and
settled on Kubernetes (K8S). This decision drove service architectures that are well
isolated from the underlying infrastructure. This approach has already paid massive
dividends:

• When funding lines suddenly shifted we were able to painlessly transition from
an on-premises facility to an Interim Data Facility on Google Cloud.

• The Rubin Science Platform (RSP) became a generic data services platform that
is currently deployed on eight distinct (and distinctly managed) infrastructures
(on-prem and cloud).

• Cloud can now be freely leveraged for services, like the RSP, which benefit from
its advantages such as elasticity, scalability, and isolation.

Our architectural approach is geared towards lowering the cost for developing and
deploying a new data service. Services utilize a common infrastructure (Phalanx1) pro-
viding services such as authentication and authorization, secrets management, Trans-
port Layer Security (TLS) certificates, and templates to speed up creation of new ser-
vices in the FastAPI framework. The GitOps infrastructure for K8S deployment using
ArgoCD takes care of easy per-infrastructure configuration and deployment.

On the summit in Cerro Pachón, where we have on-prem machines, the Chile
DevOps team use Foreman and Puppet to bring up a full K8S infrastructure. Both
DM and Telescope and Site software then deploy services on top of this infrastructure.
Deploying control components on K8S allows for better resilience. There are of course
some devices for which this approach does not work.

4. Lessons learned

We would like to share some observations from this project in a number of areas.

4.1. Standards

Standards are excellent, they minimize the learning curve for new hires which is a
major problem on all software projects. Gaia used the European Cooperation for Space

1http://phalanx.lsst.io/
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Standardization (ECSS; O’Mullane et al. 2007), and Rubin used Model-Based Systems
Engineering (MBSE; Selvy et al. 2018).

For astronomy we have also have the International Virtual Observatory (IVOA)
standards. Gaia archive is fully IVOA based (Salgado et al. 2019; Gonzalez-Nunez
2015), and the Sloan Digital Sky Survey (SDSS) implemented and helped define many
of the original protocols (Thakar et al. 2005). Rubin is IVOA first, with implementa-
tions of TAP, HiPS, and the SODA cutout service. Rubin uses DataLink to abstract
image access from ObsTAP results and it is further utilized within the system such that
we do not just expose IVOA services but we use them internally also.

One upside of picking IVOA standards is that now there are many implementations
available. Rubin uses the CADC’s TAP implementation with our own QServ plugin;
users of the TAP service have no idea they are using QServ. That allows us to use
Firefly for visualization fairly easily as it is fully VO based.

4.2. Architecture

There is a lot of analysis and design to come up with an architecture – standards help
with that. Undoubtedly tools to support your chosen standards are extremely useful
in the beginning, later they may become cumbersome. Both Rubin and Gaia started
out with Rational Architect and switched at some point to Magic Draw. Rubin still
maintains a full set of requirements and design elements in Magic Draw while Gaia
switched to code as prime and reverse engineers some diagrams for documentation
purposes.

For verification Rubin uses Jira Test Manager (Selvy et al. 2018) while Gaia used
an in-house system based on open software (Comoretto et al. 2012). A systematic and
largely automated approach to verification is needed from the outset.

One catch on both projects was to have clearly written and testable requirements,
this is extremely difficult and neither project was stellar. We can easily fall in the trap
of assuming that all agree on vague statements or requirements when usually a little
delving will show quite the opposite. It is worth putting effort in early to write down in
detail and as precisely as possible how we think things will work. This requires systems
engineering which is often underestimated.

How you do your initial breakdown is possibly immaterial, they all work and you
will inevitably end up with 7 ± 2 subsystems. You will end up with a a range of client
server, model view controller, tiers, pipes and filters etc. Frequently large projects start
all subsystems together but a slower ramp up is better in some cases to start subsystems
when needed; admittedly it is hard to keep politics out of that sort of decision. For Gaia,
Coordination Unit 1 (CU1 Architecture) and CU3 (Astrometry) were concentrated on
initially with others trailing by some months – people from other CUs formed part of
CU1. CU9 (Gaia Archive) was purposefully delayed to many years after the other parts
of the project were almost built and launch was close. On Rubin all DM WBS elements
started together; some teams were ready but others did not need their components yet. It
did lead to good involvement in the developer guide and project management approach.

4.3. Documentation

It is highly recommended to have a good document publishing and indexing system.
Provide templates for standard documents early on to make it easy for people to follow
the standards. Texmf is a good way to do this for LATEX. Most Gaia docs used the
provided Latex templates and were in SVN while Livelink held the published PDFs and
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the Livelink search system worked to some extent. Metadata in Livelink was curated
and only documentalists were allowed to upload documents.

Rubin developed a documentation infrastructure that further lowers the barrier to
documentation by providing templated creation via Slack and uses the same IDE/toolchain
developers use for coding, supports Restructured Text and LATEX, and is published
via Github. Single page documents (tech notes) and site-based documentation (e.g.,
https://pipelines.lsst.io) share the same infrastructure (Sick 2015) and search
indexing hub (https://www.lsst.io). This has also minimized useful information
being consigned in hard to find (e.g., Google docs) and easy to forget or hard to edit in
one’s preferred IDE (e.g. wikis) locations. Rubin Docushare holds change controlled
documents (PDFs, and Word), it has a search function though everyone has difficulty
finding documents in it. This may be because the metadata is often incomplete or in-
correct.

Both Rubin and Gaia have "bibfile" generation for all recorded docs: Gaia using
Livelink is complete, Rubin using https://lsst.io is incomplete (since not all docs
use that infrastructure). The Livelink API allowed the construction of the bibfile easily
while we have failed to crack the Docushare API for Rubin, plus the Rubin metadata is
less than perfect.

Glossaries are good and it is great to start them early and get everyone using them.
Both Rubin and Gaia also have tools to generate acronym lists from documents (text, or
tex – not Word).2. Gaia goes one step further with all constants used in docs and code
stored in a single parameter database (de Bruijne et al. 2005), that really requires work
from the outset.

4.4. Interfaces

One of our core tenets is to separate the data model from the persistence mechanism.
Rubin Butler makes sure algorithms never access data directly (Jenness et al. 2022,
2019; Lust et al. 2023; Gower et al. 2023). Felis holds the model in YAML, Butler
passes Python Objects to clients with algorithm code not knowing about data location
or file formats. Similarly Gaia had data trains and the Main DataBase (MDB) dictionary
which insulated algorithms from data access since the outset (O’Mullane & Lindegren
1999).

Then there are the interfaces between systems and to others; these are controlled
by Interface Requirements Documents (IRD) and Interface Control Documents (ICD).
These need system engineering and test plans from the outset. What Rubin calls ICDs
are really only IRDs. The Gaia MDB dictionary holds all data models (Hernandez &
Hutton 2015; O’Mullane et al. 2011a) and is the basis of the ICD between the subsys-
tems. This was insufficient and we had to do work later to make data transfers and
processing work well.

4.5. Products, repositories and technology stacks

Not all projects use product trees but they can be very useful. The Rubin product tree
identified all software products and who is responsible for them in construction. This
was good but infrequently updated (partially perhaps since it was in MagicDraw). It

2http://gaia.esac.esa.int/gpdb/glossary.txt, https://www.lsst.org/scientists/

glossary-acronyms
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should help group packages into products and help dependencies but on Rubin we have
100s of repos on GitHub, the dependencies are not straight forward, and few are usable
standalone. We pretty much need to build a complete set from source giving us a sort of
mono-build but we have a package-based set of GitHub repos. Clearly the latter is the
correct pattern but getting cleanly defined buildable packages is hard. The use of Conda
environments has allowed improvements but it started late and we have not been able to
turn the tide. We did stop having patched versions for third-party packages by ensuring
that corresponding packages existed in conda-forge. The middleware has been made
independent and put on PyPI which allowed SPHEREx to adopt it. Some software best
practices are given in Jenness et al. (2018).

Gaia has a huge SVN repo of everything based roughly on product tree. Builds are
done on parts of the SVN tree – dependencies strictly managed at Jar level via Nexus.
Printed out full product trees are impressive to see the amount of work to do and are
useful at early reviews.

4.6. Deployment

As mentioned in §3.4 we are cloud-native on Rubin. Abstracting infrastructure effec-
tively (Kubernetes / container orchestration, middleware etc) facilitates wider adoption
of software and services by others, reducing context switching penalty and supporting
continuing expertise. At a low level DM uses Puppet but SLAC were already using
Chef and continue to do so – having both of these is unfortunate on one project.

Gaia chose Java for portability and ease of coding. There were no containers but
Jars were always deployed from Nexus. All configurations for various machines were
in SVN deployment scripts pulled correct versions to a specific machine.

4.7. Databases

Some people love them and some people hate them, some of us love them and hate
them but databases are a part of any big system and choosing the correct one is hard.
We think databases are great for persistence, the ability to query in different ways and
relational support for Atomicity, Consistency, Isolation, and Durability (ACID). But
there are problems with centralization/replication, schema evolution, and performance
cliffs. We have difficulties with multi-user/multi-tenant systems but REST APIs in front
help a lot.

A mistake often made is trying to use one single database – more are better and
per-application databases, sometimes specialized (Redis, InfluxDB), add resilience and
are more manageable nowadays. On Rubin we have InfluxDB for summit Engineering,
Postgres for observing logs and ancillary info and AlertsDB. We use Cassandra for
Prompt Products and of course we have in house developed QServ for catalog access
(Mueller et al. 2023). Gaia had at least Intersystems Cache for processing (O’Mullane
et al. 2011b), Postgres for archive and the dictionary.

4.8. Open software project management

It seems appropriate to mention management here though that could be a topic for a full
paper or book of its own (many insights may be found in O’Mullane (2005)). First we
should be clear leadership is required for complex astronomy/software projects, not just
management. Finding good leaders is very hard and that requires domain expertise and
management training. We try to help by spreading some management across several
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people, exposing them to the issues in the large project and ways to deal with them.
Most importantly, provide support to potential managers/leaders. One must acknowl-
edge this route is not for everyone – experimenting is good but give people a route back
in a short timescale if they decide it is not what they wanted.

You can do Agile but you probably want earned value (Gill et al. 2014; Kantor
et al. 2016) to help understand what is being delivered and since NSF and other agen-
cies require it. You need to find good managers who understand both technical and
managerial needs which is super hard. Of course the aim is to build a techno/scientific
culture in leadership and breed more managers of the required ilk and create community
and collaboration around a codebase nurtured by those mangers. To help we should be
offering opportunities for getting career credit for supporting the mission and its com-
munity, not just first-to-publish.

There are lots of parties and institutes in big projects. If you want to do open
source put it in the contracts/agreements from the outset. Licensing is important, Rubin
picked GPL but would now prefer a less restrictive license – it’s hard to change so do
not make it too explicit in the contracts.
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Ivezić, Ž., et al. 2019, ApJ, 873, 111. arXiv:0805.2366
Jenness, T., Bosch, J. F., Salnikov, A., Lust, N. B., Pease, N. M., Gower, M., Kowalik, M.,

Dubois-Felsmann, G. P., Mueller, F., & Schellart, P. 2022, in Software and Cyberinfras-
tructure for Astronomy VII, vol. 12189 of Proc. SPIE, 1218911. arXiv:2206.14941

Jenness, T., et al. 2018, in Software and Cyberinfrastructure for Astronomy V, vol. 10707 of
Proc. SPIE, 1070709

Jenness, T., et al. 2019, in ADASS XXVII, edited by P. J. Teuben, M. W. Pound, B. A. Thomas,
& E. M. Warner, vol. 523 of ASP Conf. Ser., 653. arXiv:1812.08085
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