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Abstract. We discuss design patterns and anti-patterns in astronomical software
architecture and system design. We refer to our experience on several projects, such
as Rubin Observatory, Gaia, SDSS, UKIRT, and JCMT, to highlight what worked and
what did not.

1. Introduction

The Legacy Survey of Space and Time (LSST) (Ivezić et al. 2019) is a “wide fast deep”
optical/near-IR survey of half the sky in ugrizy bands to a combined depth of r ∼ 27.5
(36 nJy) based on 825 visits over ten years. Carried out by the Vera C. Rubin Obser-
vatory (Rubin) on Cerro Pachón (with an altitude of 2647 m) in Chile, the survey will
produce around 100 PB of data consisting of about a billion 16 Mpix images, enabling
measurements for 40 billion objects. Rubin Observatory will take an image approxi-
mately every 40 s (slew and settle time plus 30 s exposure time), which leads to around
20 TB of images streaming off the mountain from Chile each night. Rubin’s LSST is not
the first wide-field imaging survey, but the combination of depth, area, and throughput
makes it uniquely challenging.

The observatory is due to go into full operations in late 2024. In the meantime,
we routinely operate the Rubin Auxiliary Telescope with the LSST Atmospheric Trans-
mission Imager and Slitless Spectrograph (LATISS) instrument as both an imager and
spectrograph (Ingraham et al. 2020). During regular operations, it will be used as a
spectrograph to measure atmospheric transmission, but during construction, it has been
used as an imager to integrate and commission the data management system. For regu-
larly updated key milestones, see O’Mullane (2022).

In this paper, we introduce the vision, architecture, and guiding values of the Rubin
Data Management (DM) System. We then discuss some lessons learned building the
DM system, including comparisons to other projects, primarily Gaia.
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2. System Vision

The mission statement for Rubin Data Management (DM) is to “Stand up operable,
maintainable, quality services to deliver high-quality LSST data products for science
and education, all on time and within reasonable cost.” DM will deploy its software for
producing and serving the data products, and the elements of the DM system include
the following.

DM will transfer the images from Chile to the US data facility, SLAC, within
seven seconds by using the 100 Gbps long-haul network, which was an early invest-
ment of the project. Once at SLAC, the images are processed in parallel through the
prompt processing system (see Section 3.1), which, within minutes, distributes alerts
of astronomical sources which have moved, changed, or appeared. After 80 hours, the
images will be available to the data rights holders. On a roughly annual cadence, DM
will reprocess all the images taken since the start of operations and release new catalogs
and other products as defined in Jurić et al. (2021) (see Section 3.2).

2.1. Democratizing research in astronomy

We will also serve these data products on the Rubin Science Platform. Because data
at this volume does not fit on a laptop, we provide the infrastructure for researchers to
bring their code to the data rather than the data to their code. Because the load is on our
servers, users need only an internet connection and a browser to allow for sophisticated
experimentation.

In this way, the Rubin Science Platform provides a level playing field for interact-
ing with Rubin data. Open-source software and open data are essential to open science
and reproducibility. However, open data alone is not sufficient for inclusivity. We must
also find ways to support researchers who are resource-poor (lacking the computing
resources associated with major research universities), time-poor (have a high teaching
load, few/no grad students or postdocs), or who work in liberal arts colleges, histori-
cally black colleges, or other places that lack an extensive peer network for technical
and research support. Lowering the barrier to entry requires minimizing the invest-
ment (time, money, experience) necessary to meaningfully engage with the scientific
questions that can be resolved with the data.

3. Architecture

Figure 1 shows a simplified view of the system architecture. The full details are publicly
available in (Lim et al. 2018). All the DM code is available on GitHub at https:
//github.com/lsst.

DM’s work commences once the image is read out of the Camera. DM already
gathers some information that the Camera software puts in the image header to make a
minimally meaningful image. As the data is written, the Camera software also provides
a quick look at the image. Once available, the image is written to the Observatory Op-
erations Data Service (OODS) and simultaneously transferred to the US Data Facility
(USDF) at SLAC via the Prompt Transfer System. Though we use Rucio for transfers
between facilities, the Prompt Transfer System requires custom code to support faster
transfers.
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Figure 1. Simplified Vera C. Rubin Architecture diagram from Magic Draw

On the summit, a restricted access Science Platform allows staff to interact with
the images in the OODS directly. A cluster of about 400 cores is available for quick
ad-hoc processing in situ, but we expect most processing to be done at the USDF.

3.1. Prompt Processing

The Prompt Processing framework runs at the USDF. However, many of the frame-
work’s components will be reused to drive rapid analysis and quick-look functionality
at the Summit and test stand facilities. The design of Prompt Processing is driven
by the requirement that alerts be distributed within 120 seconds of completion of the
readout of the last exposure of the visit. To enable as much I/O and computation as
possible to be done in advance, we instantiate one process per CCD when the summit
sends a next_visit Kafka event. These next_visit events provide notice of the telescope
pointing, exposure duration, filter selection, and other metadata at least 20 seconds in
advance of the first exposure of a visit. Upon receiving the next_visit event, we use
knative in a Kubernetes environment to prepare a new container where we connect
to the Butler to pre-load reference catalogs, calibration products, templates, solar sys-
tem ephemerides, and prior alert history. Once the raw images corresponding to an
earlier next_visit event for a given detector finish downloading to a local Ceph object
store, the images are ingested to the container-local Butler, and the Alert Production
pipeline payload begins processing. The Alert Production pipeline produces packaged
alerts streamed to the Community Brokers, writes all data products to the repository at
the USDF with the Butler, and updates the Alert Pipeline Database (APDB) with new
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measurements. Detailed information on the initial design and prototype in the Google
Cloud environment can be found in Lim (2022b). Figure 2 provides a flow chart for
prompt processing.

Figure 2. Prompt Processing flow diagram.

3.2. Data Release Processing

About once per year, we will reprocess all data from the start of the survey. We will
spend a few months performing pilot runs and validation before starting the nine-month
batch processing. Individual jobs are distributed between France, the US, and the UK
data facilities using PanDA (Lim 2022a) The batch processing system is described by
Gower et al. (2023) in more detail in this issue. The US data facility distributes the
quantum graphs and raw images for execution at the three sites (figure 3). Copies of the
resulting catalogs and processed images will be available from all three data facilities.

Figure 3. Data Release Production event chart showing communication between
the US, French, and UK data facilities (USDF, FrDF, and UKDF respectively). But-
ler repos are described by Lust et al. (2023).
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3.3. Data Access

Data rights holders will have access to the catalogs and images via the Rubin Science
platform. Catalogs will be accessible via relational databases and column stores to
support different access patterns. The object table contains the measurements that have
utilized all the visits and is estimated at 4×1010 rows. However, the ForcedSource table,
which contains the lightcurves (one row for each observation of each object), will run
to 1012 rows. Qserv (Mueller et al. 2023) was built specifically to answer astronomy
queries quickly for large numbers of users. Because astronomers often ask for many
rows, table scans are often unavoidable. Qserv’s shared-nothing distributed architecture
can serve multiple queries with single shared table scans.

We have compared Qserv’s performance to non-relational databases such as Google’s
BigQuery Thomson (e.g., 2019) and column stores such as parquet. Qserv provides the
best value for catalog queries. However, we see the advantage of non-relational tech-
nology for some unpredictable and complex access that Qserv may or may not handle
for user-defined functions, pattern matching, or unusual iteration schemes. For exam-
ple, we expect users to compute a statistic on every lightcurve using a small number of
columns. Many cloud tools, such as Spark and DASK, work best with column stores
like parquet. Therefore, we plan to make parquet files available to serve this access
pattern and as a backup for Qserv.

Because compute is cheap, but storage is expensive on the cloud, we have chosen
a hybrid model. We will hold most data on premises at SLAC but run the science
platform in the cloud (O’Mullane et al. 2021). The ingress is free, and the user egress
is manageable.

3.4. Cloud Native

Like many projects (O’Mullane et al. 2017), Rubin leaned heavily on containers early
on. We also quickly understood the need for sophisticated container orchestration and
settled on Kubernetes (K8S). This decision drove service architectures that are well
isolated from the underlying infrastructure. This approach has already paid massive
dividends:

• When funding lines suddenly shifted, we were able to painlessly transition from
an on-premises facility to an Interim Data Facility on Google Cloud.

• The Rubin Science Platform (RSP) became a generic data services platform that
is currently deployed on eight distinct (and distinctly managed) infrastructures
(on-prem and cloud).

• Cloud can now be freely leveraged for services, like the RSP, which benefit from
its advantages, such as elasticity, scalability, and isolation.

Our architectural approach is geared towards lowering the cost of developing and
deploying a new data service. Services utilize a common infrastructure (Phalanx1) pro-
viding services such as authentication and authorization, secrets management, Trans-
port Layer Security (TLS) certificates, and templates to speed up the creation of new

1http://phalanx.lsst.io/
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services in the FastAPI framework. The GitOps infrastructure for K8S deployment
using ArgoCD takes care of easy per-infrastructure configuration and deployment.

On the summit in Cerro Pachón, where we have on-prem machines, the Chile
DevOps team uses Foreman and Puppet to bring up a full K8S infrastructure. Both
DM and Telescope and Site software then deploy services on top of this infrastructure.
Deploying control components on K8S allows for better resilience.

4. Lessons learned

We would like to share some observations from this project in several areas.

4.1. Standards

Standards are excellent. They minimize the learning curve for new hires, which is a
major problem on all software projects. Gaia used the European Cooperation for Space
Standardization (ECSS; O’Mullane et al. 2008), and Rubin used Model-Based Systems
Engineering (MBSE; Selvy et al. 2018).

We also have the International Virtual Observatory (IVOA) standards for astron-
omy. Gaia archive is fully IVOA based (Salgado et al. 2019; Gonzalez-Nunez 2015),
and the Sloan Digital Sky Survey (SDSS) implemented and helped define many of the
original protocols (Thakar et al. 2005). Rubin is IVOA first, with implementations of
TAP, HiPS, and the SODA cutout service. Rubin uses DataLink to abstract image ac-
cess from ObsTAP results, which is further utilized within the system to expose IVOA
services and use them internally.

One upside of picking IVOA standards is that many implementations are now
available. Rubin uses the CADC’s TAP implementation with our own Qserv plugin;
users of the TAP service have no idea they are using Qserv. That allows us to use
Firefly for visualization fairly easily, as it is fully VO based.

4.2. Architecture

There is a lot of analysis and design to develop an architecture – standards help with
that. Undoubtedly tools to support your chosen standards are handy in the beginning.
Later they may become cumbersome. Both Rubin and Gaia started with Rational Archi-
tect and switched to Magic Draw. Rubin still maintains a complete set of requirements
and design elements in Magic Draw, while Gaia switched to code as prime and reverse
engineers some diagrams for documentation purposes.

For verification, Rubin uses Jira Test Manager (Selvy et al. 2018) while Gaia used
an in-house system based on open software (Comoretto et al. 2012). A systematic and
automated approach to verification is needed from the outset.

One difficulty on both projects was writing clear written and testable requirements.
In hindsight, both projects could have done better. We can easily fall into the trap
of assuming that all agree on vague statements or requirements when usually a little
delving will show quite the opposite. It is worth putting in the effort early to write how
we think things will work in detail and as precisely as possible. This precision requires
systems engineering, which is often underestimated.

Regardless of the project, systems tend to be split up at the outset into 7 ± 2 sub-
systems. Frequently large projects start all subsystems together, but often starting each
subsystem as needed would work better. For example, on Gaia, Coordination Unit 1
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(CU1 Architecture) and CU3 (Astrometry) were concentrated initially, with other Units
trailing by some months. People from CU1 and CU3 could move to those other units.
CU9 (Gaia Archive) was purposefully delayed until launch was close. On Rubin, all
DM work breakdown structure elements started together. Not all components were
needed initially. However, the simultaneous start led to good engagement, reflected in
the developer guide and project management approach.

4.3. Documentation

We found that a good document publishing and indexing system is essential. We recom-
mend providing templates for standard documents early on to make it easy for people to
follow the standards. texmf works well for LATEX. Both Rubin and Gaia have "bibfile"
generation for all recorded docs.

Most Gaia docs used the provided Latex templates and were in SVN, while Livelink
held the published PDFs, and the Livelink search system worked to some extent. Meta-
data in Livelink was curated, and only documentalists were allowed to upload docu-
ments. The Livelink API allowed for the easy construction of bibfiles.

Rubin developed a documentation infrastructure that further lowers the barrier to
documentation by providing templated creation via bespoke Slackbot. It uses the same
IDE/toolchain developers use for coding, supports Restructured Text and LATEX, and
publishes via GitHub. Single page documents, technotes, and site-based documentation
(e.g., https://pipelines.lsst.io) share the same infrastructure (Sick 2015) and
search indexing hub (https://www.lsst.io). This system has made documents easy
to find, remember and edit in one’s preferred IDE. In contrast, the Rubin project beyond
DM stores change-controlled documents (PDFs and Word) in Docushare, which has a
search function that is difficult to use. Its frequent failure to find documents may be
because it relies on metadata which is often incomplete or incorrect. Furthermore, we
failed to crack the Docushare API for the automatic generation of bibfiles.

We also recommend building project glossaries early, maintaining them, and pro-
moting their use. Both Rubin and Gaia also have tools to generate acronym lists from
documents (text or tex – not Word).2. Gaia goes one step further with all constants used
in docs and code stored in a single parameter database (de Bruijne et al. 2005), which
requires work from the outset.

4.4. Interfaces

Rubin DM defines and maintains many interfaces. The first interface separates the data

model from the persistence mechanism, which implements one of our core tenets. The
Rubin Butler ensures algorithms never access data directly (Jenness et al. 2022, 2019;
Lust et al. 2023; Gower et al. 2023). The Butler passes Python Objects to clients with
algorithm code unaware of data location or file formats. Similarly, Gaia had data trains
and the Main DataBase (MDB) dictionary, which insulated algorithms from data access
since the outset (O’Mullane & Lindegren 1999).

The interfaces between systems and others are controlled by Interface Require-
ments Documents (IRD) and Interface Control Documents (ICD). These need system
engineering and test plans from the outset. What Rubin calls ICDs are only IRDs. The

2http://gaia.esac.esa.int/gpdb/glossary.txt, https://www.lsst.org/scientists/

glossary-acronyms
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Gaia MDB dictionary holds all data models (Hernandez & Hutton 2015; O’Mullane
et al. 2011a) and is the basis of the ICD between the subsystems. This dictionary was
insufficient, and we had to work later to make data transfers and processing work well.

4.5. Products, repositories and technology stacks

Not all projects use product trees, but they can be very useful. The Rubin product tree
identified all software products and who was responsible for them in construction. This
product tree was good but infrequently updated (partially, perhaps, because it was in
MagicDraw). The product tree should help group packages into products and clarify
dependencies. However, on Rubin, we have hundreds of repos on GitHub, the depen-
dencies are not straightforward, and few repos are usable as standalone packages. This
means that we need to build a complete set from source, yielding a mono-build. While
we have a package-based set of GitHub repos, which is the correct pattern, getting
cleanly defined buildable packages has proved difficult. The use of Conda environ-
ments has allowed improvements, but it started late. We discontinued patched versions
for third-party packages by ensuring that corresponding packages existed in conda-
forge. The middleware has been made independent and put on PyPI, allowing other
projects, such as SPHEREx, to adopt it. Some software best practices are given in
Jenness et al. (2018).

Gaia has a huge SVN repo of everything based on the product tree. Builds are
done on parts of the SVN tree – dependencies strictly managed at Jar level via Nexus.
Printed-out full product trees are impressive to see the amount of work to do and are
useful at early reviews.

4.6. Deployment

As mentioned in §3.4 we are cloud-native on Rubin. Abstracting infrastructure effec-
tively (Kubernetes / container orchestration, middleware) facilitates wider adoption of
software and services by others, reducing context-switching penalties and supporting
continuing expertise. At a low level, DM uses Puppet, but SLAC was already using
Chef and continue to do so –using both of these is unfortunate on one project.

Gaia chose Java for portability and ease of coding. There were no containers, but
Jars were always deployed from Nexus. All configurations for various machines were
in SVN deployment scripts that pulled the correct versions to a specific machine.

4.7. Databases

Some people love them, and some people hate them, some of us love them and hate
them, but databases are a part of any big system, and choosing the correct one is hard.
We think databases are great for persistence, the ability to query in different ways,
and relational support for Atomicity, Consistency, Isolation, and Durability (ACID).
Nevertheless, there are problems with centralization/replication, schema evolution, and
performance cliffs. We have difficulties with multi-user/multi-tenant systems but REST
APIs in front helps a lot.

A common mistake is trying to use one single database. More is better, and per-
application databases, sometimes specialized (Redis, InfluxDB), add resilience and are
more manageable nowadays. On Rubin, we have InfluxDB for summit Engineering,
Postgres for observing logs and ancillary info, and AlertsDB.
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We use Cassandra for Prompt Products, and of course, we have developed Qserv
in-house for catalog access (Mueller et al. 2023). Gaia had at least Intersystems Cache
for processing (O’Mullane et al. 2011b), Postgres for archive, and the dictionary.

4.8. Open software project management

It seems appropriate to mention management here though that could be a topic for a
full paper or book of its own (many insights may be found in O’Mullane (2005)). First,
leadership is required for complex astronomy/software projects, not just management.
Finding good leaders is very hard, requiring domain expertise and management train-
ing. We help by spreading some management across several people, exposing them to
the issues in the large project and ways to deal with them. Most importantly, provide
support to potential managers/leaders. One must acknowledge that this route is not for
everyone – experimenting is good but gives people a route back in a short timescale if
they decide it is not what they wanted.

While it is possible to do Agile, the NSF and other agencies require earned value
(Gill et al. 2014; Kantor et al. 2016) to help understand what is being delivered. We
recommend finding good managers who understand technical and managerial needs,
which is difficult. Of course, the aim is to build a techno/scientific culture in leadership
and breed more managers of the required ilk and create community and collaboration
around a codebase nurtured by those managers. To help we should be offering oppor-
tunities for getting career credit for supporting the mission and its community, not just
first-to-publish.

Running a big project also requires many agreements with institutions. To build
open-source software, we recommend putting it in the contracts/agreements from the
outset but without being overly explicit about the license. Licensing is important. Rubin
picked GPL at the outset but now prefers a less restrictive license. We have found it
very hard to change at this stage. .

Acknowledgments. This material or work is supported in part by the National Sci-
ence Foundation through Cooperative Agreement AST-1258333 and Cooperative Sup-
port Agreement AST1836783 managed by the Association of Universities for Research
in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-
76SF00515 with the SLAC National Accelerator Laboratory managed by Stanford Uni-
versity.

References

Comoretto, G., Gallegos, J., Els, S., Gracia, G., Lock, T., Mercier, E., & O’Mullane, W. 2012, in
Modeling, Systems Engineering, and Project Management for Astronomy V, vol. 8449
of Proc. SPIE, 84490G

de Bruijne, J. H. J., Lammers, U., & Perryman, M. A. C. 2005, in The Three-Dimensional
Universe with Gaia, edited by C. Turon, K. S. O’Flaherty, & M. A. C. Perryman, vol.
576 of ESA Special Publication, 67

Gill, R., Gracia, G., Lupton, R. H., & O’Mullane, W. 2014, in Modeling, Systems Engineering,
and Project Management for Astronomy VI, vol. 9150 of Proc. SPIE, 91501E

Gonzalez-Nunez, J. 2015, in Science Operations 2015: Science Data Management, 8
Gower, M., et al. 2023, in ADASS XXXII, edited by S. Gaudet, S. Gwyn, P. Dowler, D. Bohlen-

der, & A. Hincks (San Francisco: ASP), vol. TBD of ASP Conf. Ser., TBD
Hernandez, J., & Hutton, A. 2015, in ADASS XXIV, edited by A. R. Taylor, & E. Rosolowsky,

vol. 495 of ASP Conf. Ser., 47



10 O’Mullane et al.

Ingraham, P., et al. 2020, in Software and Cyberinfrastructure for Astronomy VI, vol. 11452 of
Proc. SPIE, 114520U
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